An Improved EMASK Algorithm for Privacy-Preserving Frequent Pattern Mining

نویسندگان

  • Congfu Xu
  • Jinlong Wang
  • Hongwei Dan
  • Yunhe Pan
چکیده

As a novel research direction, privacy-preserving data mining (PPDM) has received a great deal of attentions from more and more researchers, and a large number of PPDM algorithms use randomization distortion techniques to mask the data for preserving the privacy of sensitive data. In reality, for PPDM in the data sets, which consist of terabytes or even petabytes of data, efficiency is a paramount important consideration in addition to the requirements of privacy and accuracy. Recently, EMASK, an efficient privacy-preserving frequent pattern mining algorithm, was proposed. Motivated by EMASK, in this paper, we improve on it, and present an improved algorithm BV-EMASK to furthermore enhance efficiency. Performance evaluation shows that BVEMASK reduces the execution time significantly when comparing with EMASK.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy Preserving Outsourcing for Frequent Itemset Mining

Cloud computing uses the paradigm of data mining-as-a-service. A company/store lacking in mining expertise can outsource its mining needs to a service provider (server). The item-set of the outsourced database are the private property of the data owner. To protect this corporate privacy, the data owner encrypts the data and sends to the server. Based on the mining queries sent from client side,...

متن کامل

Mining Frequent Itemsets in Distorted Databases with Granular Computing

Data perturbation is one popular method to achieve privacy-preserving data mining. However, distorted databases bring enormous overheads to mining algorithms as compared to original databases. In this paper, we present the GrC-FIM algorithm to address the efficiency problem in mining frequent itemsets from distorted databases. Two measures are introduced to overcome the weakness in existing wor...

متن کامل

Modified Privacy Preserving Data Mining System for Improved Performance

Privacy of information and security issues now-a-days has become the requisite because of big data. A novel framework for extracting and deriving information when the data is distributed amongst the multiple parties is presented by Privacy Preserving Data Mining (PPDM). The concern of PPDM system is to protect the disclosure of information and its misuse. Major issue with PPDM that exists is to...

متن کامل

Privacy Preserving Frequent Itemset Mining by Reducing Sensitive Items Frequency using GA

Frequent Itemset mining extracts novel and useful knowledge from large repositories of data and this knowledge is useful for effective analysis and decision making in telecommunication networks, marketing, medical analysis, website linkages, financial transactions, advertising and other applications. The misuse of these techniques may lead to disclosure of sensitive information. Motivated by th...

متن کامل

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005